
Lessons from the field: Local research and surveillance of climate sensitive diseases in coastal Ecuador

Anna M. Stewart Ibarra, PhD, MPA Center for Global Health & Translational Science SUNY Upstate Medical University ICCS-4, Montevideo, Uruguay; December 10, 2014

Epidemic Early Warning System Data

Response time

Uncertainty

UPSTATE MEDICAL UNIVERSITY Center for Global Health & Translational Science

Strengthening climate-health surveillance and research capacities in Ecuador

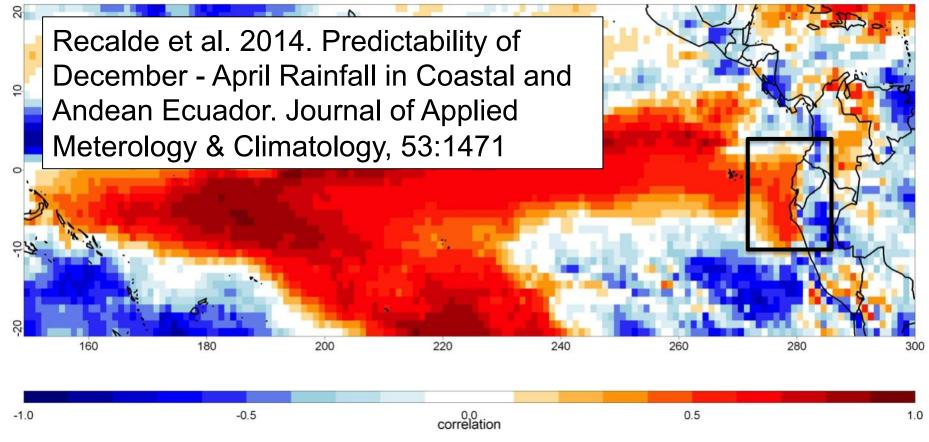
Aim: Create a long-term research platform for climate-sensitive diseases and other priority areas, e.g., other pathogens, clinical trials, vector control interventions.

Approach:

- Strong institutional partners and a team of people who facilitate this kind of research.
- A social-ecological systems approach to study design and analysis.
- Strengthening virus-vector-climate surveillance systems (diverse data streams) and ongoing training and capacity building
- Integration of data through spatiotemporal modeling.

Outcome:

- Generate the evidence base for the effects of climate on health
- Identify and test effective public health responses and interventions.

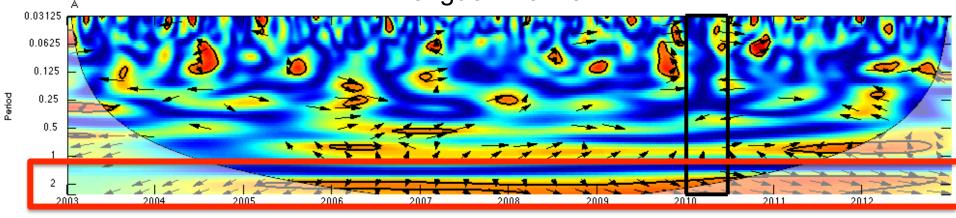

Machala, Provincia El Oro ~250,000 pop. Strategic surveillance location Endemic for dengue

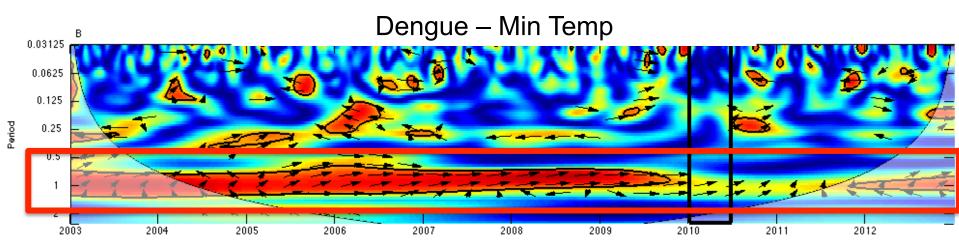
Ecuador

Improving seasonal climate forecasts

Correlation between the Oceanic Niño Index (ONI) in Oct-Nov-Dec y rainfall in Feb-Mar-April

(Stewart Ibarra & Lowe, 2011, ASTMH poster)


ENSO, local climate & nonclimate factors drive dengue epidemics in the province of EI Oro

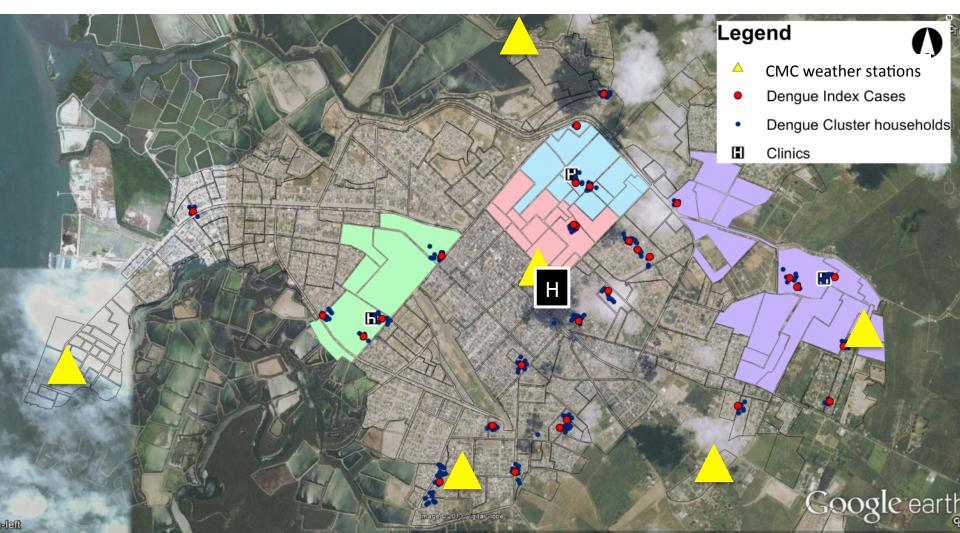

(Model adequacy results 2001-2010)			
Model	$\log \rho_t$	DIC	R^2_{LR}
Base (Seasonal)	$\alpha + \beta_{t'(t)}$	1313.18	0.44
Dase (Beasonar)		1515.10	0.77
Climate effects	$\alpha + \beta_{t'(t)} + \sum \gamma x_{jt}$	1305.28	0.49
Non-climate effects	$\alpha + \beta_{t'(t)} + \sum \varepsilon z_{jt}$	1286.63	0.56
Climate and non-climate effects	$\alpha + \beta_{t'(t)} + \sum \gamma x_{jt} + \sum \varepsilon z_{jt}$	1276.67	0.61
Climate, random and non-	$\alpha + \beta_{t'(t)} + \sum \gamma x_{jt} + \delta_{T'(t)} + \sum \varepsilon z_{jt}$	1245.25	0.72
climate effects			

(Stewart Ibarra & Lowe, 2013, AJTMH)

Evidence of multiyear cycles of climate & dengue in Machala

Wavelet coherence spectrum Dengue - Rainfall

(Stewart Ibarra, Muñoz, et al. 2014, BMC Infectious Disease)


Evidence that the effect of climate on dengue varies within the city of Machala.

(Stewart Ibarra, et al. 2013, PLOS ONE)

Strengthening integrated surveillance of dengue virus, vectors, and climate in Machala

Ongoing studies: *Micro-climate modeling, Social-ecological risk, Vector-virus dynamics, Micronutrient-dengue interactions, Immunology, Virology...*

Complimentary projects in Ecuador funded by Ecuadorian & regional institutions (2014)

- Interaction between climate variability and the occurrence of harmful algae blooms (HABs) and their impact on human health in an estuarine-coastal environment (Estero Salado -Santa Elena) (ESPOL)
- Creation of a South American Network on Diagnostics, Treatment and Control of Vector Borne Diseases (UNASUR)
- Pilot evaluation of attractive toxic sugar baits (ATSB) for dengue vector control in Ecuador (PUCE, pending)
- Exploratory study of risk factors for dengue virus transmission on Santa Cruz and San Cristobal, Province of Galapagos. (USFQ)
- Determining the mosquito and sand fly fauna diversity at the Tiputini Biodiversity Station, Yasuní National Park, using classical taxonomy and novel DNA barcoding techniques: Scientific collaboration between USFQ (Ecuador),WRBU-WRAIR (USA), and SUNY UMU (USA). (USFQ)
- Prometeo Fellowship. US-Ecuador collaboration for Dengue Research (SENESCYT)
- Developing an operational research framework to assess local flood response capacities in Ecuador, the Dominican Republic and Bolivia (IAI)

It is important to have *strong institutional partners* and a team of people who facilitate this kind of research.

Research is driven by national strategic priorities

Formalize through MOUs and other agreements

Implement through continuous engagement, formal & informal communication.

Build trust, relationships, reputation. Face time is critical.

Local champions are key.

Need partners who understand local-national governance structures, regulations, and culture.

Often a moving target!

Policy

Ministry of Health National Institute of Meteorology Ministry of Environment World Health Organization

Social science

Sociologists Anthropologists Communications experts

Civil society actors

Community leaders NGOs Media Artists

Public-Private Partnerships

Pharmaceuticals (vaccines, diagnostics) Insecticide producers

Biomedical science

Doctors Virology Immunology Epidemiology

Funding & Regulatory agencies

NSF, NIH, DoD, FDA SENESCYT, ENFARMA, ARCSA

Biophysical science

Climate science Modelers (GIS, math) Ecology Entomology It is important to have strong institutional partners and *a team of people who facilitate this kind of research.*

- **Open** to new ideas and non-expert input
- **Flexible** to adjust as needed when change arise in the study
- Willing to embrace ambiguity and complexity.
- Willing to examine personal biases and epistemological assumptions.
- Active team participants
- Willing to express their values to the group and understand the role and work of other participants.
- Experience working in an interdisciplinary team, or have patience and willingness to learn the process.
- **Collaborative**, exhibiting **respect**, **humbleness**, **and trust** for the people and process.
- Ability to **clearly communicate**.

Acknowledgements

SUNY UMU

Timothy Endy Mark Polhemus Tina Lupone Arturo Barbachano Christine King

Cornell

Saurabh Mehta Julia Finkelstein

University of Florida

Sadie J. Ryan

Columbia University & Universidad de Zulia Ángel Muñoz

INAMHI

Raúl Mejía Cris Recalde Keytia Rivero

ESPOL

Washington Cárdenas Mercy J. Borbor Bonny Bayot Diego Angamarca

USFQ Renato Leon Andrea Torres

Ministry of Health

Mercy Silva Efrain Beltrán Tania Ordoñez Jose Cueva

Field team

Lyndsay Krisher Jesse Krisher Cinthya Katiuska Froilan Heras Carlos Enriquez Victor Arteaga Egan Waggoner Regan Deming Winnie Chu Erica Tauzer Abby Fesler

Funding: Global Emerging Infection Surveillance and Response System (GEIS), SENESCYT of Ecuador, Fulbright IIE

Center for Global Health & Translational Science

Gracias!

Anna M. Stewart Ibarra stewarta@upstate.edu

